How Gaia and coral reefs regulate ocean pH

by Jim Steele

Although some researchers have raised concerns about possible negative effects of rising CO2 on ocean surface pH, there are several lines of evidence demonstrating marine ecosystems are far more sensitive to fluxes of carbon dioxide from ocean depths and the biosphere’s response than from invasions of atmospheric CO2. There is also ample evidence that lower pH does not inhibit photosynthesis or lower ocean productivity (Mackey 2015). On the contrary, rising CO2 makes photosynthesis less costly.

Furthermore in contrast to researchers arguing rising atmospheric CO2 will inhibit calcification, increased photosynthesis not only increases calcification, paradoxically the process of calcification produces CO2 and drops pH to levels lower than predicted by climate change models. A combination of warmer tropical waters and coral reef biology results in out-gassing of CO2 from the ocean to the atmosphere, making coral reefs relatively insensitive to the effects of atmospheric CO2 on ocean pH.

Sixty million years ago proxy evidence indicates ocean surface pH hovered around 7.4. If surface pH was in equilibrium with the atmosphere, then CO2 concentrations would have hovered around 2000 ppm, but there is no consensus that CO2 reached those levels. However as will be discussed, there are biological processes that do lower surface pH to that extent, despite much lower atmospheric CO2 concentrations.

Share: