Search
Close this search box.

Search Results for: 18 years – Page 2

Global warming ‘pause’ expands to ‘new record length’: No warming for 18 years 5 months

Special to Climate Depot El Niño has not yet paused the Pause Global temperature update: no warming for 18 years 5 months By Christopher Monckton of Brenchley Since December 1996 there has been no global warming at all (Fig. 1). This month’s RSS temperature – still unaffected by the most persistent el Niño conditions of the current weak cycle – shows a new record length for the Pause: 18 years 5 months. The result, as always, comes with a warning that the temperature increase that usually accompanies an el Niño may come through after a lag of four or five months. If, on the other hand, la Niña conditions begin to cool the oceans in time, there could be a lengthening of the Pause just in time for the Paris world-government summit in December 2015. Figure 1. The least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomaly dataset shows no global warming for 18 years 5 months since December 1996. The hiatus period of 18 years 5 months, or 221 months, is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. The divergence between the models’ predictions in 1990 (Fig. 2) and 2005 (Fig. 3), on the one hand, and the observed outturn, on the other, also continues to widen. Figure 2. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century, made with “substantial confidence” in IPCC (1990), for the 303 months January 1990 to March 2015 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at less than 1.4 K/century equivalent, taken as the mean of the RSS and UAH v. 5.6 satellite monthly mean lower-troposphere temperature anomalies. Figure 3. Predicted temperature change, January 2005 to March 2015, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the near-zero observed anomalies (dark blue) and real-world trend (bright blue), taken as the mean of the RSS and UAH v. 5.6 satellite lower-troposphere temperature anomalies. The Technical Note explains the sources of the IPCC’s predictions in 1990 and in 2005, and also demonstrates that that according to the ARGO bathythermograph data the oceans are warming at a rate equivalent to less than a quarter of a Celsius degree per century. There are also details of the long-awaited beta-test version 6.0 of the University of Alabama at Huntsville’s satellite lower-troposphere dataset, which now shows a pause very nearly as long as the RSS dataset. However, the data are not yet in a form compatible with the earlier version, so v. 6 will not be used here until the beta testing is complete. Key facts about global temperature The RSS satellite dataset shows no global warming at all for 221 months from December 1996 to April 2015 – more than half the 436-month satellite record. The global warming trend since 1900 is equivalent to 0.8 Cº per century. This is well within natural variability and may not have much to do with us. Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century. The fastest warming rate lasting 15 years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century. In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century. The global warming trend since 1990, when the IPCC wrote its first report, is equivalent to below 1.4 Cº per century – half of what the IPCC had then predicted. Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100. The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than 15 years that has been measured since 1950. The IPCC’s 4.8 Cº-by-2100 prediction is almost four times the observed real-world warming trend since we might in theory have begun influencing it in 1950. The oceans, according to the 3600+ ARGO bathythermograph buoys, are warming at a rate equivalent to just 0.02 Cº per decade, or 0.23 Cº per century. Recent extreme weather cannot be blamed on global warming, because there has not been any global warming to speak of. It is as simple as that.  Technical note Our latest topical graph shows the least-squares linear-regression trend on the RSS satellite monthly global mean lower-troposphere dataset for as far back as it is possible to go and still find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño. Instead, it is calculated so as to find the longest period with a zero trend. The satellite datasets are arguably less unreliable than other datasets in that they show the 1998 Great El Niño more clearly than all other datasets. The Great el Niño, like its two predecessors in the past 300 years, caused widespread global coral bleaching, providing an independent verification that the satellite datasets are better able to capture such fluctuations without artificially filtering them out than other datasets. Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates below those that are published. The satellite datasets are based on reference measurements made by the most accurate thermometers available – platinum resistance thermometers, which provide an independent verification of the temperature measurements by checking via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years. The RSS graph (Fig. 1) is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file, takes their mean and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity. The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line. The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression, since summer temperatures in one hemisphere are compensated by winter in the other. Therefore, an AR(n) model generates results little different from a least-squares trend. Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat. RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, discusses it at remss.com/blog/recent-slowing-rise-global-temperatures. Dr Mears’ results are summarized in Fig. T1: Figure T1. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998. Dr Mears writes: “The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.” Dr Mears concedes the growing discrepancy between the RSS data and the models, but he alleges “cherry-picking” of the start-date for the global-temperature graph: “Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.” In fact, the spike in temperatures caused by the Great el Niño of 1998 is largely offset in the linear-trend calculation by two factors: the not dissimilar spike of the 2010 el Niño, and the sheer length of the Great Pause itself. Curiously, Dr Mears prefers the much-altered terrestrial datasets to the satellite datasets. However, over the entire length of the RSS and UAH series since 1979, the trends on the mean of the terrestrial datasets and on the mean of the satellite datasets are near-identical. Indeed, the UK Met Office uses the satellite record to calibrate its own terrestrial record. The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed. It remains possible that el Nino-like conditions may prevail this year, reducing the length of the Great Pause. However, the discrepancy between prediction and observation continues to widen. Sources of the IPCC projections in Figs. 2 and 3 IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded: “Nevertheless, … we have substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.” That “substantial confidence” was substantial over-confidence. For the rate of global warming since 1990 – the most important of the “broad-scale features of climate change” that the models were supposed to predict – is now below half what the IPCC had then predicted. In 1990, the IPCC said this: “Based on current models we predict: “under the IPCC Business-as-Usual (Scenario A) emissions of greenhouse gases, a rate of increase of global mean temperature during the next century of about 0.3 Cº per decade (with an uncertainty range of 0.2 Cº to 0.5 Cº per decade), this is greater than that seen over the past 10,000 years. This will result in a likely increase in global mean temperature of about 1 Cº above the present value by 2025 and 3 Cº before the end of the next century. The rise will not be steady because of the influence of other factors” (p. xii). Later, the IPCC said: “The numbers given below are based on high-resolution models, scaled to be consistent with our best estimate of global mean warming of 1.8 Cº by 2030. For values consistent with other estimates of global temperature rise, the numbers below should be reduced by 30% for the low estimate or increased by 50% for the high estimate” (p. xxiv). The orange region in Fig. 2 represents the IPCC’s less extreme medium-term Scenario-A estimate of near-term warming, i.e. 1.0 [0.7, 1.5] K by 2025, rather than its more extreme Scenario-A estimate, i.e. 1.8 [1.3, 3.7] K by 2030. Some try to say the IPCC did not predict the straight-line global warming rate that is shown in Figs. 2-3. In fact, however, the IPCC’s predicted global warming over so short a term as the 25 years from 1990 to the present are little different from a straight line (Fig. T2). Figure T2. Historical warming from 1850-1990, and predicted warming from 1990-2100 on the IPCC’s “business-as-usual” Scenario A (IPCC, 1990, p. xxii). Because this difference between a straight line and the slight uptick in the warming rate the IPCC predicted over the period 1990-2025 is so small, one can look at it another way. To reach the 1 K central estimate of warming since 1990 by 2025, there would have to be twice as much warming in the next ten years as there was in the last 25 years. That is not likely. Likewise, to reach 1.8 K by 2030, there would have to be four or five times as much warming in the next 15 years as there was in the last 25 years. That is still less likely. But is the Pause perhaps caused by the fact that CO2 emissions have not been rising anything like as fast as the IPCC’s “business-as-usual” Scenario A prediction in 1990? No: CO2 emissions have risen rather above the Scenario-A prediction (Fig. T3). Figure T3. CO2 emissions from fossil fuels, etc., in 2012, from Le Quéré et al. (2014), plotted against the chart of “man-made carbon dioxide emissions”, in billions of tonnes of carbon per year, from IPCC (1990). Plainly, therefore, CO2 emissions since 1990 have proven to be closer to Scenario A than to any other case, because for all the talk about CO2 emissions reduction the fact is that the rate of expansion of fossil-fuel burning in China, India, Indonesia, Brazil, etc., far outstrips the paltry reductions we have achieved in the West to date. True, methane concentration has not risen as predicted in 1990 (Fig. T4), for methane emissions, though largely uncontrolled, are simply not rising as the models had predicted, and the predictions were extravagantly baseless. The overall picture is clear. Scenario A is the emissions scenario from 1990 that is closest to the observed emissions outturn, and yet there has only been a third of a degree of global warming since 1990 – about half of what the IPCC had then predicted with what it called “substantial confidence”. Figure T4. Methane concentration as predicted in four IPCC Assessment Reports, together with (in black) the observed outturn, which is running along the bottom of the least prediction. This graph appeared in the pre-final draft of IPCC (2013), but had mysteriously been deleted from the final, published version, inferentially because the IPCC did not want to display such a plain comparison between absurdly exaggerated predictions and unexciting reality. To be precise, a quarter-century after 1990, the global-warming outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS and UAH monthly global mean surface temperature anomalies – is 0.35 Cº, equivalent to just 1.4 Cº/century, or a little below half of the central estimate of 0.70 Cº, equivalent to 2.8 Cº/century, that was predicted for Scenario A in IPCC (1990). The outturn is visibly well below even the least estimate. In 1990, the IPCC’s central prediction of the near-term warming rate was higher by two-thirds than its prediction is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. T5 shows, even that is proving to be a substantial exaggeration. Is the ocean warming? One frequently-discussed explanation for the Great Pause is that the coupled ocean-atmosphere system has continued to accumulate heat at approximately the rate predicted by the models, but that in recent decades the heat has been removed from the atmosphere by the ocean and, since globally the near-surface strata show far less warming than the models had predicted, it is hypothesized that what is called the “missing heat” has traveled to the little-measured abyssal strata below 2000 m, whence it may emerge at some future date. Actually, it is not known whether the ocean is warming: each of the 3600 automated ARGO bathythermograph buoys somehow has to cover 200,000 cubic kilometres of ocean – a 100,000-square-mile box more than 316 km square and 2 km deep. Plainly, the results on the basis of a resolution that sparse (which, as Willis Eschenbach puts it, is approximately the equivalent of trying to take a single temperature and salinity profile taken at a single point in Lake Superior less than once a year) are not going to be a lot better than guesswork. Fortunately, a long-standing bug in the ARGO data delivery system has now been fixed, so I am able to get the monthly global mean ocean temperature data – though ARGO seems not to have updated the dataset since December 2014. However, that gives us 11 full years of data. Results are plotted in Fig. T5. The ocean warming, if ARGO is right, is equivalent to just 0.02 Cº decade–1, or 0.2 Cº century–1 equivalent. Figure T5. The entire near-global ARGO 2 km ocean temperature dataset from January 2004 to December 2014 (black spline-curve), with the least-squares linear-regression trend calculated from the data by the author (green arrow). Finally, though the ARGO buoys measure ocean temperature change directly, before publication NOAA craftily converts the temperature change into zettajoules of ocean heat content change, which make the change seem a whole lot larger. The terrifying-sounding heat content change of 260 ZJ from 1970 to 2014 (Fig. T6) is equivalent to just 0.2 K/century of global warming. All those “Hiroshima bombs of heat” are a barely discernible pinprick. The ocean and its heat capacity are a lot bigger than some may realize. Figure T6. Ocean heat content change, 1957-2013, in Zettajoules from NOAA’s NODC Ocean Climate Lab: http://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT, with the heat content values converted back to the ocean temperature changes in fractions of a Kelvin that were originally measured. NOAA’s conversion of the minuscule temperature change data to Zettajoules, combined with the exaggerated vertical aspect of the graph, has the effect of making a very small change in ocean temperature seem considerably more significant than it is. Converting the ocean heat content change back to temperature change reveals an interesting discrepancy between NOAA’s data and that of the ARGO system. Over the period of ARGO data, from 2004-2014, the NOAA data imply that the oceans are warming at 0.05 Cº decade–1, equivalent to 0.5 Cº century–1, or rather more than double the rate shown by ARGO. ARGO has the better-resolved dataset, but since the resolutions of all ocean datasets are very low one should treat all these results with caution. What one can say is that, on such evidence as these datasets are capable of providing, the difference between underlying warming rate of the ocean and that of the atmosphere is not statistically significant, suggesting that if the “missing heat” is hiding in the oceans it has magically found its way into the abyssal strata without managing to warm the upper strata on the way. On these data, too, there is no evidence of rapid or catastrophic ocean warming. Furthermore, to date no empirical, theoretical or numerical method, complex or simple, has yet successfully specified mechanistically either how the heat generated by anthropogenic greenhouse-gas enrichment of the atmosphere has reached the deep ocean without much altering the heat content of the intervening near-surface strata or how the heat from the bottom of the ocean may eventually re-emerge to perturb the near-surface climate conditions that are relevant to land-based life on Earth. Most ocean models used in performing coupled general-circulation model sensitivity runs simply cannot resolve most of the physical processes relevant for capturing heat uptake by the deep ocean. Ultimately, the second law of thermodynamics requires that any heat which may have accumulated in the deep ocean will dissipate via various diffusive processes. It is not plausible that any heat taken up by the deep ocean will suddenly warm the upper ocean and, via the upper ocean, the atmosphere. If the “deep heat” explanation for the hiatus in global warming were correct (and it is merely one among dozens that have been offered), then the complex models have failed to account for it correctly: otherwise, the growing discrepancy between the predicted and observed atmospheric warming rates would not have become as significant as it has. The UAH v. 6.0 dataset The long-awaited new version of the UAH dataset is here at last. The headline change is that the warming trend has fallen from 0.14 to 0.11 C° per decade since 1979. The UAH and RSS datasets are now very close to one another, and there is a clear difference between the warming rates shown by the satellite and terrestrial datasets. Roy Spencer’s website, drroyspencer.com, has an interesting explanation of the reasons for the change in the dataset. When I mentioned to him that the usual suspects would challenge the alterations that have been made to the dataset, he replied: “It is what it is.” In that one short sentence, true science is encapsulated. Below, Fig. T7 shows the two versions of the UAH dataset superimposed on one another. Fig. T8 plots the differences between the two versions. Fig. T7. The two UAH versions superimposed on one another. Fig. T8. Difference between UAH v. 6 and v. 5.6. Related Link:  It’s Official – There are now 66 excuses for Temp ‘pause’ – Updated list of 66 excuses for the 18-26 year ‘pause’ in global warming)

Global Warming ‘Pause’ Continues — Temperature Standstill Lengthens to 18 years 4 months

El Niño or ñot, the Pause lengthens again Global temperature update: no warming for 18 years 4 months By Christopher Monckton of Brenchley Since December 1996 there has been no global warming at all (Fig. 1). This month’s RSS temperature – so far unaffected by the most persistent el Niño conditions of the present rather attenuated cycle – shows a new record length for the ever-Greater Pause: 18 years 4 months – and counting. This result rather surprises me. I’d expected even a weak el Niño to have more effect that this, but it is always possible that the temperature increase that usually accompanies an el Niño will come through after a lag of four or five months. On the other hand, Roy Spencer, at his always-to-the-point blog (drroyspencer.com), says: “We are probably past the point of reaching a new peak temperature anomaly from the current El Niño, suggesting it was rather weak.” I shall defer to the expert, with pleasure. For if la Niña conditions begin to cool the oceans in time, there could be quite some lengthening of the Pause just in time for the Paris world-government summit in December.   Figure 1. The least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomaly dataset shows no global warming for 18 years 4 months since December 1996. The hiatus period of 18 years 4 months, or 220 months, is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. Given that the Paris summit is approaching and most “world leaders” are not being told the truth about the Pause, it would be a great help if readers were to do their best to let their national negotiators and politicians know that unexciting reality continues to diverge ever more spectacularly from the bizarre “settled-science” predictions on which Thermageddon was built. The divergence between the models’ predictions in 1990 (Fig. 2) and 2005 (Fig. 3), on the one hand, and the observed outturn, on the other, also continues to widen, and is now becoming a real embarrassment to the profiteers of doom – or would be, if the mainstream news media were actually to report the data rather than merely repeating the failed predictions of catastrophe. Figure 2. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century, made with “substantial confidence” in IPCC (1990), for the 303 months January 1990 to March 2015 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at less than 1.4 K/century equivalent, taken as the mean of the RSS and UAH satellite monthly mean lower-troposphere temperature anomalies. Figure 3. Predicted temperature change, January 2005 to March 2015, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the near-zero observed anomalies (dark blue) and real-world trend (bright blue), taken as the mean of the RSS and UAH satellite lower-troposphere temperature anomalies. The Technical Note has now been much expanded to take account of the fact that the oceans, according to the ARGO bathythermograph data, are scarcely warming. Key facts about global temperature Ø The RSS satellite dataset shows no global warming at all for 220 months from December 1996 to March 2014 – more than half the 435-month satellite record. Ø The global warming trend since 1900 is equivalent to 0.8 Cº per century. This is well within natural variability and may not have much to do with us. Ø Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century. Ø The fastest warming rate lasting ten years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century. Ø In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century. Ø The global warming trend since 1990, when the IPCC wrote its first report, is equivalent to below 1.4 Cº per century – half of what the IPCC had then predicted. Ø Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100. Ø The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than ten years that has been measured since 1950. Ø The IPCC’s 4.8 Cº-by-2100 prediction is almost four times the observed real-world warming trend since we might in theory have begun influencing it in 1950. Ø The oceans, according to the 3600+ ARGO bathythermograph buoys, are warming at a rate equivalent to just 0.02 Cº per decade, or 0.2 Cº per century. Ø Recent extreme weather cannot be blamed on global warming, because there has not been any global warming to speak of. It is as simple as that.   Technical note Our latest topical graph shows the least-squares linear-regression trend on the RSS satellite monthly global mean lower-troposphere dataset for as far back as it is possible to go and still find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño. Instead, it is calculated so as to find the longest period with a zero trend. The RSS dataset is arguably less unreliable than other datasets in that it shows the 1998 Great El Niño more clearly than all other datasets (though UAH runs it close). The Great el Niño, like its two predecessors in the past 300 years, caused widespread global coral bleaching, providing an independent verification that RSS is better able to capture such fluctuations without artificially filtering them out than other datasets. Besides, there is in practice little statistical difference between the RSS and other datasets over the 18-year period of the Great Pause. Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates below those that are published. The satellite datasets are based on reference measurements made by the most accurate thermometers available – platinum resistance thermometers, which provide an independent verification of the temperature measurements by checking via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years. The RSS graph (Fig. 1) is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file, takes their mean and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity. The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line. The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression. Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat. RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, discusses it at remss.com/blog/recent-slowing-rise-global-temperatures. Dr Mears’ results are summarized in Fig. T1: Figure T1. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998. Dr Mears writes: “The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.” Dr Mears concedes the growing discrepancy between the RSS data and the models, but he alleges “cherry-picking” of the start-date for the global-temperature graph: “Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.” In fact, the spike in temperatures caused by the Great el Niño of 1998 is largely offset in the linear-trend calculation by two factors: the not dissimilar spike of the 2010 el Niño, and the sheer length of the Great Pause itself. Curiously, Dr Mears prefers the much-altered terrestrial datasets to the satellite datasets. However, over the entire length of the RSS and UAH series since 1979, the trends on the mean of the terrestrial datasets and on the mean of the satellite datasets are near-identical. Indeed, the UK Met Office uses the satellite record to calibrate its own terrestrial record. The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed. It remains possible that el Nino-like conditions may prevail this year, reducing the length of the Great Pause. However, the discrepancy between prediction and observation continues to widen. Sources of the IPCC projections in Figs. 2 and 3 IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded: “Nevertheless, … we have substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.” That “substantial confidence” was substantial over-confidence. For the rate of global warming since 1990 – the most important of the “broad-scale features of climate change” that the models were supposed to predict – is now below half what the IPCC had then predicted. In 1990, the IPCC said this: “Based on current models we predict: “under the IPCC Business-as-Usual (Scenario A) emissions of greenhouse gases, a rate of increase of global mean temperature during the next century of about 0.3 Cº per decade (with an uncertainty range of 0.2 Cº to 0.5 Cº per decade), this is greater than that seen over the past 10,000 years. This will result in a likely increase in global mean temperature of about 1 Cº above the present value by 2025 and 3 Cº before the end of the next century. The rise will not be steady because of the influence of other factors” (p. xii). Later, the IPCC said: “The numbers given below are based on high-resolution models, scaled to be consistent with our best estimate of global mean warming of 1.8 Cº by 2030. For values consistent with other estimates of global temperature rise, the numbers below should be reduced by 30% for the low estimate or increased by 50% for the high estimate” (p. xxiv). The orange region in Fig. 2 represents the IPCC’s less extreme medium-term Scenario-A estimate of near-term warming, i.e. 1.0 [0.7, 1.5] K by 2025, rather than its more extreme Scenario-A estimate, i.e. 1.8 [1.3, 3.7] K by 2030. Some try to say the IPCC did not predict the straight-line global warming rate that is shown in Figs. 2-3. In fact, however, the IPCC’s predicted global warming over so short a term as the 25 years from 1990 to the present are little different from a straight line (Fig. T2). Figure T2. Historical warming from 1850-1990, and predicted warming from 1990-2100 on the IPCC’s “business-as-usual” Scenario A (IPCC, 1990, p. xxii). Because this difference between a straight line and the slight uptick in the warming rate the IPCC predicted over the period 1990-2025 is so small, one can look at it another way. To reach the 1 K central estimate of warming since 1990 by 2025, there would have to be twice as much warming in the next ten years as there was in the last 25 years. That is not likely. Likewise, to reach 1.8 K by 2030, there would have to be four or five times as much warming in the next 15 years as there was in the last 25 years. That is still less likely. But is the Pause perhaps caused by the fact that CO2 emissions have not been rising anything like as fast as the IPCC’s “business-as-usual” Scenario A prediction in 1990? No: CO2 emissions have risen rather above the Scenario-A prediction (Fig. T3). Figure T3. CO2 emissions from fossil fuels, etc., in 2012, from Le Quéré et al. (2014), plotted against the chart of “man-made carbon dioxide emissions”, in billions of tonnes of carbon per year, from IPCC (1990). Plainly, therefore, CO2 emissions since 1990 have proven to be closer to Scenario A than to any other case, because for all the talk about CO2 emissions reduction the fact is that the rate of expansion of fossil-fuel burning in China, India, Indonesia, Brazil, etc., far outstrips the paltry reductions we have achieved in the West to date. True, methane concentration has not risen as predicted in 1990 (Fig. T4), for methane emissions, though largely uncontrolled, are simply not rising as the models had predicted, and the predictions were extravagantly baseless. The overall picture is clear. Scenario A is the emissions scenario from 1990 that is closest to the observed emissions outturn, and yet there has only been a third of a degree of global warming since 1990 – about half of what the IPCC had then predicted with what it called “substantial confidence”. Figure T4. Methane concentration as predicted in four IPCC Assessment Reports, together with (in black) the observed outturn, which is running along the bottom of the least prediction. This graph appeared in the pre-final draft of IPCC (2013), but had mysteriously been deleted from the final, published version, inferentially because the IPCC did not want to display such a plain comparison between absurdly exaggerated predictions and unexciting reality. To be precise, a quarter-century after 1990, the global-warming outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS and UAH monthly global mean surface temperature anomalies – is 0.35 Cº, equivalent to just 1.4 Cº/century, or a little below half of the central estimate of 0.70 Cº, equivalent to 2.8 Cº/century, that was predicted for Scenario A in IPCC (1990). The outturn is visibly well below even the least estimate. In 1990, the IPCC’s central prediction of the near-term warming rate was higher by two-thirds than its prediction is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. T5 shows, even that is proving to be a substantial exaggeration. Is the ocean warming? One frequently-discussed explanation for the Great Pause is that the coupled ocean-atmosphere system has continued to accumulate heat at approximately the rate predicted by the models, but that in recent decades the heat has been removed from the atmosphere by the ocean and, since globally the near-surface strata show far less warming than the models had predicted, it is hypothesized that what is called the “missing heat” has traveled to the little-measured abyssal strata below 2000 m, whence it may emerge at some future date. Actually, it is not known whether the ocean is warming: each of the 3600 automated ARGO bathythermograph buoys somehow has to cover 200,000 cubic kilometres of ocean – a 100,000-square-mile box more than 316 km square and 2 km deep. Plainly, the results on the basis of a resolution that sparse (which, as Willis Eschenbach puts it, is approximately the equivalent of trying to take a single temperature and salinity profile taken at a single point in Lake Superior less than once a year) are not going to be a lot better than guesswork. Fortunately, a long-standing bug in the ARGO data delivery system has now been fixed, so I am able to get the monthly global mean ocean temperature data – though ARGO seems not to have updated the dataset since December 2014. However, that gives us 11 full years of data. Results are plotted in Fig. T5. The ocean warming, if ARGO is right, is equivalent to just 0.02 Cº decade–1, or 0.2 Cº century–1 equivalent. Figure T5. The entire near-global ARGO 2 km ocean temperature dataset from January 2004 to December 2014 (black spline-curve), with the least-squares linear-regression trend calculated from the data by the author (green arrow). Finally, though the ARGO buoys measure ocean temperature change directly, before publication NOAA craftily converts the temperature change into zettajoules of ocean heat content change, which make the change seem a whole lot larger. The terrifying-sounding heat content change of 260 ZJ from 1970 to 2014 (Fig. T6) is equivalent to just 0.2 K/century of global warming. All those “Hiroshima bombs of heat” are a barely discernible pinprick. The ocean and its heat capacity are a lot bigger than some may realize. Figure T6. Ocean heat content change, 1957-2013, in Zettajoules from NOAA’s NODC Ocean Climate Lab: http://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT, with the heat content values converted back to the ocean temperature changes in fractions of a Kelvin that were originally measured. NOAA’s conversion of the minuscule temperature change data to Zettajoules, combined with the exaggerated vertical aspect of the graph, has the effect of making a very small change in ocean temperature seem considerably more significant than it is. Converting the ocean heat content change back to temperature change reveals an interesting discrepancy between NOAA’s data and that of the ARGO system. Over the period of ARGO data, from 2004-2014, the NOAA data imply that the oceans are warming at 0.05 Cº decade–1, equivalent to 0.5 Cº century–1, or rather more than double the rate shown by ARGO. ARGO has the better-resolved dataset, but since the resolutions of all ocean datasets are very low one should treat all these results with caution. What one can say is that, on such evidence as these datasets are capable of providing, the difference between underlying warming rate of the ocean and that of the atmosphere is not statistically significant, suggesting that if the “missing heat” is hiding in the oceans it has magically found its way into the abyssal strata without managing to warm the upper strata on the way. On these data, too, there is no evidence of rapid or catastrophic ocean warming. Furthermore, to date no empirical, theoretical or numerical method, complex or simple, has yet successfully specified mechanistically either how the heat generated by anthropogenic greenhouse-gas enrichment of the atmosphere has reached the deep ocean without much altering the heat content of the intervening near-surface strata or how the heat from the bottom of the ocean may eventually re-emerge to perturb the near-surface climate conditions that are relevant to land-based life on Earth. Most ocean models used in performing coupled general-circulation model sensitivity runs simply cannot resolve most of the physical processes relevant for capturing heat uptake by the deep ocean. Ultimately, the second law of thermodynamics requires that any heat which may have accumulated in the deep ocean will dissipate via various diffusive processes. It is not plausible that any heat taken up by the deep ocean will suddenly warm the upper ocean and, via the upper ocean, the atmosphere. If the “deep heat” explanation for the hiatus in global warming were correct (and it is merely one among dozens that have been offered), then the complex models have failed to account for it correctly: otherwise, the growing discrepancy between the predicted and observed atmospheric warming rates would not have become as significant as it has. # Related Link:  It’s Official – There are now 66 excuses for Temp ‘pause’ – Updated list of 66 excuses for the 18-26 year ‘pause’ in global warming

The Great Pause lengthens again: Global temperature update: The Pause is now 18 years 3 months (219 months)

Special to Climate Depot [Also see: It’s Official – There are now 66 excuses for Temp ‘pause’ – Updated list of 66 excuses for the 18-26 year ‘pause’ in global warming –  Surface Data: 2014 Officially the ‘Warmest Year on Record’ & Climatologist Dr. Roy Spencer: ‘Why 2014 Won’t Be the Warmest Year on Record’ (based on surface data)– ‘We are arguing over the significance of hundredths of a degree’ – Physicist analyzes satellite temperature data: ‘Please laugh out loud when someone will be telling you that it was the warmest year’ For more explanation of how the ‘pause’ in global warming conflicts with the claims of 2014 being the ‘hottest year ever’ based on surface data, see related links below.  ] # The Great Pause lengthens again Global temperature update: the Pause is now 18 years 3 months By Christopher Monckton of Brenchley Since October 1996 there has been no global warming at all (Fig. 1). This month’s RSS [1] temperature plot pushes up the period without any global warming from 18 years 2 months to 18 years 3 months. Figure 1. The least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomaly dataset shows no global warming for 18 years 3 months since October 1996. The hiatus period of 18 years 3 months, or 219 months, is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. As the Pope unwisely prepares to abandon forever the political neutrality that his office enjoins upon him, and to put his signature to a climate-Communist encyclical largely drafted by the radical Prefect of the Pontifical Academy of Sciences, Mgr. Marcelo Sanchez Sorondo, the Almighty continues to display a sense of humor. We are now less than a year away the Paris world-government conference. Yet the global warming that the IPCC had so confidently but misguidedly predicted 25 years ago has stopped altogether. Figure 2. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century, made with “substantial confidence” in IPCC (1990), January 1990 to November 2014 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at less than 1.4 K/century equivalent, taken as the mean of the RSS and UAH satellite monthly mean lower-troposphere temperature anomalies. A quarter-century after 1990, the global-warming outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS [1] and UAH [2] monthly global mean surface temperature anomalies – is 0.34 Cº, equivalent to just 1.4 Cº/century, or a little below half of the central estimate in IPCC (1990) and well below even the least estimate (Fig. 2). The Great Pause is a growing embarrassment to those who had told us with “substantial confidence” that the science was settled and the debate over. Nature had other ideas. Though approaching 70 mutually incompatible and more or less implausible excuses for the Pause are appearing in nervous reviewed journals and among proselytizing scientists, the possibility that the Pause is occurring because the computer models are simply wrong about the sensitivity of temperature to manmade greenhouse gases can no longer be dismissed, and is demonstrated in a major peer-reviewed paper published this month in the Orient’s leading science journal. Remarkably, even the IPCC’s latest and much reduced near-term global-warming projections are also excessive (Fig. 3). +++ Figure 3. Predicted temperature change, January 2005 to November 2014, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the observed anomalies (dark blue) and zero real-world trend (bright blue), taken as the average of the RSS and UAH satellite lower-troposphere temperature anomalies. In 1990, the IPCC’s central estimate of near-term warming was higher by two-thirds than it is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. 3 shows, even that is proving to be a substantial exaggeration. On the RSS satellite data, there has been no global warming statistically distinguishable from zero for more than 26 years. None of the models predicted that, in effect, there would be no global warming for a quarter of a century. Key facts about global temperature The RSS satellite dataset shows no global warming at all for 219 months from October 1996 to December 2014 – more than half the 432-month satellite record. The global warming trend since 1900 is equivalent to 0.8 Cº per century. This is well within natural variability and may not have much to do with us. Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century. The fastest warming rate lasting ten years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century. In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century. The global warming trend since 1990, when the IPCC wrote its first report, is equivalent to below 1.4 Cº per century – half of what the IPCC had then predicted. Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100. The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than ten years that has been measured since 1950. The IPCC’s 4.8 Cº-by-2100 prediction is almost four times the observed real-world warming trend since we might in theory have begun influencing it in 1950. From September 2001 to November 2014, the warming trend on the mean of the 5 global-temperature datasets is nil. No warming for 13 years 3 months. Recent extreme weather cannot be blamed on global warming, because there has not been any global warming. It is as simple as that.  Technical note Our latest topical graph shows the least-squares linear-regression trend on the RSS satellite monthly global mean lower-troposphere dataset for as far back as it is possible to go and still find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño. Instead, it is calculated so as to find the longest period with a zero trend. But is the RSS satellite dataset “cherry-picked”? No. There are good reasons to consider it the best of the five principal global-temperature datasets. The indefatigable “Steven Goddard” demonstrated in the autumn of 2014 that the RSS dataset – at least as far as the Historical Climate Network is concerned – shows less warm bias than the GISS [3] or UAH [2] records. The UAH record is shortly to be revised to reduce its warm bias and bring it closer to conformity with RSS. Figure 4. Warm biases in temperature. RSS shows less bias than the UAH or GISS records. UAH, in its forthcoming Version 6.0, will be taking steps to reduce the warm bias in its global-temperature reporting. Steven Goddard writes: “The graph compares UAH, RSS and GISS US temperatures with the actual measured US HCN stations. UAH and GISS both have a huge warming bias, while RSS is close to the measured daily temperature data. The small difference between RSS and HCN is probably because my HCN calculations are not gridded. My conclusion is that RSS is the only credible data set, and all the others have a spurious warming bias.” Also, the RSS data show the 1998 Great El Niño more clearly than all other datasets. The Great el Niño, like its two predecessors in the past 300 years, caused widespread global coral bleaching, providing an independent verification that RSS is better able to capture such fluctuations without artificially filtering them out than other datasets. Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates appreciably below those that are published. The satellite datasets are based on measurements made by the most accurate thermometers available – platinum resistance thermometers, which provide an independent verification of the temperature measurements by checking via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years. The RSS graph (Fig. 1) is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file, takes their mean and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity. The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line via two well-established and functionally identical equations that are compared with one another to ensure no discrepancy between them. The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression. Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat. RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, discusses it at remss.com/blog/recent-slowing-rise-global-temperatures. Dr Mears’ results are summarized in Fig. 5: Figure 5. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998. Dr Mears writes: “The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.” Dr Mears concedes the growing discrepancy between the RSS data and the models, but he alleges “cherry-picking” of the start-date for the global-temperature graph: “Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.” In fact, the spike in temperatures caused by the Great el Niño of 1998 is largely offset in the linear-trend calculation by two factors: the not dissimilar spike of the 2010 el Niño, and the sheer length of the Great Pause itself. Replacing all the monthly RSS anomalies for 1998 with the mean anomaly value of 0.55 K that obtained during the 2010 el Niño and recalculating the trend from September 1996 [not Dr Mears’ “1997”] to September 2014 showed that the trend values “–0.00 C° (–0.00 C°/century)” in the unaltered data (Fig. 1) became “+0.00 C° (+0.00 C°/century)” in the recalculated graph. No cherry-picking, then. The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed. IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded: “Nevertheless, … we have substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.” That “substantial confidence” was substantial over-confidence. For the rate of global warming since 1990 is about half what the IPCC had then predicted. Is the ocean warming? One frequently-discussed explanation for the Great Pause is that the coupled ocean-atmosphere system has continued to accumulate heat at approximately the rate predicted by the models, but that in recent decades the heat has been removed from the atmosphere by the ocean and, since globally the near-surface strata show far less warming than the models had predicted, it is hypothesized that what is called the “missing heat” has traveled to the little-measured abyssal strata below 2000 m, whence it may emerge at some future date. The ocean “missing heat” theory is chiefly advocated by a single group in the United States. Meehl, Arblaster, Fasullo, Hu and Trenberth [7] say, “Eight decades with a slightly negative global mean surface-temperature trend show that the ocean above 300 m takes up significantly less heat whereas the ocean below 300 m takes up significantly more, compared with non-hiatus decades. The model provides a plausible depiction of processes in the climate system causing the hiatus periods, and indicates that a hiatus period is a relatively common climate phenomenon and may be linked to La Niña-like conditions,” while Balmaseda, Trenberth and Källen [8] say, “In the last decade, about 30% of the warming has occurred below 700 m, contributing significantly to an acceleration of the warming trend. The warming below 700 m remains even when the Argo observing system is withdrawn although the trends are reduced,” and Trenberth & Fasullo [2013], repeated in Trenberth, Fasullo & Balmaseda [9], say, “An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). … Global warming has not stopped: it is merely manifested in different ways.” The U.S. group is supported by a group at the Chinese Academy of Sciences [10]: “A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing. The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. … Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.” In [11] the academicians speculate that at some future date the hiatus may change its sign, leading to a further episode of perhaps accelerated global warming. Yet to date no empirical, theoretical or numerical method, complex or simple, has yet successfully specified mechanistically either how the heat generated by anthropogenic greenhouse-gas enrichment of the atmosphere has reached the deep ocean without much altering the heat content of the intervening near-surface strata or how the heat from the bottom of the ocean may eventually re-emerge to perturb the near-surface climate conditions that are relevant to land-based life on Earth. Most ocean models used in performing coupled general-circulation model sensitivity runs simply cannot resolve most of the physical processes relevant for capturing heat uptake by the deep ocean. Ultimately, the second law of thermodynamics requires that any heat which may have accumulated in the deep ocean will dissipate via various diffusive processes. It is not plausible that any heat taken up by the deep ocean will suddenly warm the upper ocean and, via the upper ocean, the atmosphere. Even if heat is reaching the benthic strata without warming the near-surface strata on the way, the transient near-surface response is rather insensitive to rising atmospheric CO2 concentration. For this reason, resolving ocean thermodynamics and circulation dynamics is not a prerequisite to the empirical study of climate sensitivity by way of our simple model. If the “deep heat” explanation for the hiatus in global warming is correct (and it is merely one among dozens that have been offered), then the complex models have failed to account for it correctly: otherwise, the growing discrepancy between the predicted and observed atmospheric warming rates would not have become as significant as it has. Since the complex models have failed in this respect, and since there are insufficient deep-ocean observations to provide reliable quantitative evidence of the putative heat accumulation below 2000 m, still less to determine the mechanism of the imagined heat transfer, still less again to apportion duly the respective contributions of anthropogenic, solar and subsea volcanic influences on the benthic heat accumulation, it is surely unreasonable for our simple model to be expected to do what the complex models have self-evidently failed to do – and what cannot be done by any model, simple or complex, unless and until measurements of far higher resolution than is now to hand become available at all points of the oceanic column. For instance, the 3500 automated Argo bathythermograph buoys have a resolution equivalent to taking a single temperature  and salinity profile in Lake Superior less than once a year: and before Argo came onstream in the middle of the last decade the resolution of oceanic temperature measurements was considerably poorer even than that, especially in the abyssal strata. The mean depth of the global ocean is 3700 m. As recently observed in [11], implicitly questioning the U.S. group’s assertions in [7-9], the resolution of samples at various depths and the length of the record are both insufficient either to permit reliable measurement of ocean heat content or to permit monitoring of oceanic radiative fluxes: “Some basic elements of the sampling problem are compiled in Table 2. About 52% of the ocean lies below 2000 m and about 18% below 3600 m. By defining a volume as having been ‘probed’ if at least one CTD station existed within a roughly 60 x 60 km2 box in the interval 1992-2011 … [a]bout 1/3 (11% of total volume) of water below 2000 m was sampled … Of the [region] lying below 3600 m, about 17% was measured. … [M]any papers assume no significant changes take place in the deep ocean over the historical period … The history of exploration suggests, however, that blank places on the map have either been assumed to be without any interesting features and dropped from further discussion, or at the other extreme, filled with ‘dragons’ invoked to explain strange reports [in G. de Jode, 1578, Speculum Orbis Terrarum, Antwerp]. … “[R]ecently, [60] offered estimates of abyssal changes with claimed accuracies of order of 0.01 W/m2 (0.0004°C temperature change equivalent over 20 years) below 700 m. If that accuracy has in fact been obtained, the sparse coverage, perhaps extended to the scope of WOCE hydrographic survey, repeated every few decades, would be sufficient.” Furthermore, almost all current analyses of ocean heat content and budget lack an accurate accounting of spatial, temporal and other systematic errors and uncertainties such as those identified in recent works by a group at the Chinese Academy of Sciences [12]: “In this study, a new source of uncertainties in calculating OHC due to the insufficiency of vertical resolution in historical ocean subsurface temperature profile observations was diagnosed. This error was examined by sampling a high-vertical-resolution climatological ocean according to the depth intervals of in situ subsurface observations, and then the error was defined as the difference between the OHC calculated by subsampled profiles and the OHC of the climatological ocean. The obtained resolution-induced error appeared to be cold in the upper 100 m (with a peak of approximately −0.1°C), warm within 100–700 m (with a peak of ~0.1°C near 180 m), and warm when averaged over 0–700-m depths (with a global average of ~0.01°–0.025°C, ~1–2.5 × 1022 J). Geographically, it showed a warm bias within 30°S–30°N and a cold bias at higher latitudes in both hemispheres, the sign of which depended on the concave or convex shape of the vertical temperature profiles. Finally, the authors recommend maintaining an unbiased observation system in the future: a minimal vertical depth bin of 5% of the depth was needed to reduce the vertical-resolution-induced bias to less than 0.005°C on global average (equal to Argo accuracy).” Again [13]: “… a new correction scheme for historical XBT data is proposed for nine independent probe-type groups. The scheme includes corrections for both temperature and depth records, which are all variable with calendar year, water temperature, and probe type. The results confirm those found in previous studies: a slowing in fall rate during the 1970s and 2000s and the large pure thermal biases during 1970–85. The performance of nine different correction schemes is compared. After the proposed corrections are applied to the XBT data in the WOD09 dataset, global ocean heat content from 1967 to 2010 is reestimated.” A forthcoming paper [14], after properly accounting for some of the sampling biases and instrumental errors and uncertainties in the ocean heat content data (i.e., applying the new global ocean temperature dataset from the Institute of Atmospheric Physics), describes a vertical profile of ocean temperature change from 2004-2013, reporting a warming hiatus above 100 m depth and from 300-700 m. The two layers that show warming are 100-300 m and 700-1500 m. These warming strata show their own distinctive horizontal spatial patterns when compared to the non-warming stratum at 300-700 meters. This observational fact leads to the following conclusion: “It is still unclear how the heat is transferring to the deeper ocean.” Furthermore, the suggestion that heat accumulation in the deep ocean explains why there has been no global warming at all for up to 18 years is far from generally accepted in the scientific literature. A remarkable variety of competing and often mutually exclusive explanations for the hiatus in global warming, chiefly involving near-surface phenomena, are offered in recent papers in the reviewed journals of climate science. In the literature, the cause of the hiatus in global warming is variously attributed to (1) coverage-induced cool bias in recent years [15], rebutted by [16] and, with respect to Arctic coverage, by [17]; (2) anthropogenic aerosols from coal-burning [18], rebutted by [19-20]; (3) decline in the warming caused by black-carbon absorption [20]; (4) emission of aerosol particulates by volcanic eruptions [21], rebutted by [22]; (5) reduced solar activity [23]; (6) effectiveness of the Montreal Protocol in controlling emissions of chlorofluorocarbons [24]; (7) a lower-than-predicted increase in methane concentration [24]; (8) a decrease in stratospheric water vapor concentration [25]; (9) strengthened Pacific trade winds [26] (previously, [27] had attributed weaker Pacific trade winds to anthropogenic global warming); (10) stadium waves in tropical Pacific circulation [28]; (11) coincidence [29]; (12) aerosol particulates from pine-trees [30]; (13) natural variability [31-32]; (14) cooler night-time temperatures in the Northern Hemisphere [33]; (15) predictions by those models that allowed for the possibility of a pause in global warming [34-35]; (16) the negative phase of the Pacific Decadal Oscillation [36-38]; (17) the Atlantic meridional overturning circulation [39]; (18) global dimming following the global brightening of 1983-2001 [40]; (19) relative frequencies of distinct el Niño types [41]; (20) surface cooling in the equatorial Pacific [42]; (21) Pacific cooling amplified by Atlantic warming [43]; (22) a combination of factors, including ENSO variability, solar decline and stratospheric aerosols [44]; (23) underestimated anthropogenic aerosol forcing [45]; (24) a new form of multidecadal variability distinct from but related to the ocean oscillations [46]; and (25) failure to initialize most models in order to conform with observation, particularly of oceanic conditions [47]. Finally, though the ARGO buoys measure ocean temperature change directly, before publication the temperature change is converted into zettajoules of ocean heat content change, which make the change seem larger. Converting the ocean heat content change back to temperature change is highly revealing. It shows how little change has really been measured. The increase in ocean heat content over the 94 ARGO months September 2005 to June 2013 was 10 x 1022 J = 100 ZJ (Fig. 6). Figure 6. Ocean heat content change, 1957-2013, from NODC Ocean Climate Laboratory: http://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT. Conversion: 650 million km3 x 4 MJ per tonne per Kelvin: each cubic meter is 1.033 tonnes. Then: 100 ZJ increase in ohc               100,000,000,000,000,000,000,000 J To raise                                        650,000,000,000,000,000 m3 x 1.033 te m–3                              671,450,000,000,000,000 te x 4,000,000 J te                2,685,800,000,000,000,000,000,000 J per Kelvin   Then 100,000 / 2,685,800 = 0.037233 K in 94 months is equivalent to 0.0475 K per decade. Accordingly, even on the quite extreme NODC ocean heat content record, the change in mean ocean temperature in the upper 2000 m in recent decades has been less than 0.5 K per century equivalent. References RSS (2014) Satellite-derived monthly global mean lower-troposphere temperature anomaly dataset: www.remss.com/data/msu/monthly_time_series/RSS_Monthly_MSU_AMSU_Channel_TLT_Anomalies_Land_and_Ocean_v03_3.txt. Accessed 1 July 2014 UAH (University of Alabama at Huntsville) (2014) Satellite MSU monthly global mean lower-troposphere temperature anomalies. http://vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc_lt_5.6.txt. Accessed 1 July 2014 NCDC, 2014, National Climatic Data Center monthly global mean land and ocean surface temperature anomalies, 1880-2013,ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/monthly.land_ocean.90S.90N.df_1901-2000mean.dat. Accessed 1 July 2014 Morice, CP, Kennedy JJ, Rayner N, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys Res 117:D08101. doi:10.1029/2011JD017187 GISS, 2014, Goddard Institute for Space Studies monthly global mean land and sea surface temperature anomalies, 1880-2014, http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt. Accessed 1 July 2014 McKitrick RR (2014) HAC-robust measurement of the duration of a trendless subsample in a global climate time series. Open J Stat 4:527-535 Meehl GA, Arblaster JM, Fasullo JT et al (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1: 360–364 Balmaseda MA, Trenberth KE, Källen E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:175401759 Trenberth KE, Fasullo JT, Balmaseda MA (2014) Earth’s energy imbalance. J Clim 27:3129-3144 Chen X, Tung KK (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345: 897–903 Wunsch C, Heimbach P (2014) Bidecadal thermal changes in the abyssal ocean. J Phys Oceanol 44: 2013–2030 Cheng L, Zhu J (2014) Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J Atm Oceanic Tech 31: 1383–1396 Cheng L, Zhu J, Cowley R et al (2014a) Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J Atm Oceanic Tech 31: 1793–1825 Cheng L, Zheng F, Zhu J (2014b) Distinctive ocean interior changes during the recent climate hiatus. Geophys Res Lett submitted Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart J R Meteot Soc  140: 1934-1944 Fyfe JC, Gillet NP, Zwiers FW (2013) Overestimated global warming over the past 20 years. Nat Clim Change 3: 767-769 Chung CE, Cha H, Vilma T et al (2013) On the possibilities to use atmospheric reanalyses to evaluate the warming structure of the Arctic. Atmos Chem Phys 13: 11209-11219 Kaufmann RK, Kauppi H, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc Natl Acad Sci USA 108: 11790-11793 Kühn T, Partanen A-I, Laakso A et al(2014) Climate impacts of changing aerosol emissions since 1996. Geophys ResLett 41: 4711-4718 Neely RR, Toon OB, Solomon S et al(2013) Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys Res Lett 40. doi: 10.1002/grl.50263 Santer BD, Bonfils C, Painter JF et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185-189 Haywood J, Jones A, Jones GS (2014) The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett 15: 92-96 Stauning P (2014) Reduced solar activity disguises global temperature rise, Atmos Clim Sci 4: 60-63 Estrada F, Perron P, Martinez-Lopez B (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat Geosci 6: 1050–1055 Solomon S, Rosenlof KH, Portmann RW et al(2010) Contributions of stratospheric water vapor to decadal changes of global warming. Science 327: 1219-1223 England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4: 222-227 Vecchi ga, Soden BJ, Wittenberg AT,  et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441: 73-76. Glaze Wyatt M, Curry JA (2013) Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim Dyn 42: 2763-2782 Schmidt GA, Shindell DT, Tsigaridis K (2014) Reconciling warming trends. Nat Geosci 7(158-160). doi: 10.1038/ngeo2105 Ehn M, Thornton JA, Kleist E,  et al (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476-479 Watanabe M, Shiogama H, Tatebe H et al (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Change 4: 893–897 Lovejoy S (2014) Return periods of global climate fluctuations and the pause. Geophys Res Lett 41:4704-47 Sillmann, J, Donat MG, Fyfe JC et al (2014) Observed and simulated temperature extremes during the recent warming. Environ Res Lett 9. doi: 10.1088/1748-9326/9/6/064023 Risbey J, Lewandowsky S, Langlais C,et al (2014) Nat Clim Change 4:835-840 Guemas V, Doblas-Reyes FJ, Andreu-Burillo I et al (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649-653 Maher N, Sen Gupta A, England MH (2014) Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys Res Lett 41:5978-5986 Trenberth KE, Fasullo JT, Branstator G et al (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change 4: 911–916 Dong L, Zhou T (2014) The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: a competition of global warming, IPO  and AMO. J Geophys Res doi: 10.1002/2013JD021395 Schleussner CF, Runge J, Lehmann J, et al (2014) The role of the North Atlantic overturning and deep ocean for multi-decadal global-mean-temperature variability. Earth Sys Dyn 5:103-115 Rahimzadeh F, Sanchez-Lorenzo A, Hamedi M,  et al (2014) New evidence on the dimming/brightening phenomenon and decreasing diurnal temperature range in Iran (1961-2009). Int J Climatol doi: 10.1002/joc.4107 Banholzer S, Donner S (2014) The influence of different El Nino types on global average temperature. Geophys Res Lett 41:2093–2099 Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501: 403–40 McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim. Change 4:888-892. doi: 10.1039/nclimate2330 Huber M, Knutti R (2014) Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat Geosci 7: 651–656 Hansen J, Sato M, Kharecha PK, et al(2011) Earth’s energy imbalance and implications. Atmos. Chem Phys 11:13421-13449. Maclas D, Stips A, Garcia-Gorriz E (2014) Application of the Singular Spectrum Analysis Technique to Study the Hiatus on the Global Surface Temperature Record. Plos One. doi: 10.1371/journal.pone.0107222 Meehl, GA, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970s shift and early 200s hiatus and predictions for 2016-2035. Geophys. Res. Lett. 41(5):17y11-1716 # Related Links:  Climatologist Dr. Roy Spencer: ‘Why 2014 Won’t Be the Warmest Year on Record’ – ‘We are arguing over the significance of hundredths of a degree’ Climatologist Dr. Pat Michaels debunks 2014 ‘hottest year’ claim: ‘Is 58.46° then distinguishable from 58.45°? In a word, ‘NO.’ Eco-Activists Warn 2014 Could Be Hottest Year On Record – Satellites Disagree ‘Hottest Year’ Update: NASA & NOAA ignore satellite data which reveal 2014 ‘well below’ hottest claims Even ignoring satellite data Year-to-date ‘record’ temps are 0.21C *below* climate model projections New paper finds excuse #66 for the ‘pause’: There’s no pause if you look at only at the warmest & coldest day of the year – Published in Environmental Research Letters 2014 might be 0.01C warmer than 2010! No Record Temperatures According To Satellites – BBC put up a deliberately apocalyptic picture while telling us the world is on course for the warmest year on record. What they failed to tell us was that the more accurate satellites, which monitor atmospheric temperatures over nearly all of the globe, say no such thing.  Figures from UAH are out for November, and these show a drop from the  October anomaly of 0.27C to 0.33C. This means that at the end of November, this year is only in a tie for 3rd with 2005, and well below the record year of 1998, and 2010. Flashback: 1990 NASA Report: ‘Satellite analysis of upper atmosphere is more accurate, & should be adopted as the standard way to monitor temp change.’ Study using dozens of models Claims: ‘Warming Climate Can Be Slowed in a Decade’ by cutting CO2 Climate Depot Note: If future temps continue to flatline or even cool, warmists can claim climate policy is responsible. They are already doing it! See: It’s Official — Temperature ‘Pause’ Caused By Climate Policies?! Medieval witchcraft lives! UK Energy Minister: Government policies ‘may have slowed down global warming’  AP’s Seth Borenstein publishes pure propaganda: Climate change has made Earth ‘hotter, weirder…downright wilder’ Climate Depot’s Morano comment: ‘AP’s Borenstein can be trusted to shill for UN’s climate summit in Lima Peru, which I will be attending and speaking at. Borenstein relies on Michael Oppenheimer (who is the UN scientists on the payroll of Hollywood stars) and Climategate’s Michael Mann. Borenstein ignores tide gauges on sea level  showing deceleration of sea level rise and ignores satellite temperatures which show the Earth in an 18 year ‘pause’ or ‘standstill’ of global warming. Borenstein tortures data in order to claim more weather extremes. We are currently at or near historic lows in tornadoes and hurricanes. Even droughts are on long term declines and floods show no trend. We know not to expect more from Borenstein.’ See: ‘Long sad history of AP reporter Seth Borenstein’s woeful global warming reporting’ Sea level claims debunked here: Extreme weather claims debunked here: Greenland ice claims debunked here: Antarctica ice claims debunked here: Overpopulation claims debunked here: Analysis: Why ’90% of the missing heat’ cannot be hiding in the oceans  

Dueling Datasets: Satellite Temperatures Reveal the ‘Global Warming Pause’ Lengthens to 18 years 2 months – (218 Months)

[Also see: It’s Official – There are now 66 excuses for Temp ‘pause’ – Updated list of 66 excuses for the 18-26 year ‘pause’ in global warming –  & Climatologist Dr. Roy Spencer: ‘Why 2014 Won’t Be the Warmest Year on Record’ (based on surface data)– ‘We are arguing over the significance of hundredths of a degree’ For more explanation of how the ‘pause’ in global warming conflicts with the claims of 2014 being the ‘hottest year ever’ based on surface data, see related links below.  ] # Onward marches the Great Pause Global temperature update: the Pause is now 18 years 2 months Guest Post By Christopher Monckton of Brenchley Since October 1996 there has been no global warming at all (Fig. 1). This month’s RSS temperature plot pushes up the period without any global warming from 18 years 1 month to 18 years 2 months (indeed, very nearly 18 years 3 months). Will this devastating chart be displayed anywhere at the Lima conference? Don’t bet on it. Figure 1. The least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomaly dataset shows no global warming for 18 years 2 months since October 1996. The hiatus period of 18 years 2 months, or 218 months, is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. What will the chart look like this time next year, at the beginning of the Paris world-government conference, at which the Treaty of Copenhagen will be dusted off and nodded through by the scientifically illiterate national negotiating delegates of almost 200 nations, ending the freedom and democracy of the West and putting absolute economic and political power in the hands of the grim secretariat of the UN climate convention? When the November 2015 RSS data are available, how many years and months of zero global warming will have occurred? Enter our friendly competition by putting your best estimate in comments. For guidance, at the December 2012 Doha conference I was banned from UN climate yadayadathons for life for the grave sin of telling the truth that there had been no global warming for 16 years. And an el Nino of unknown magnitude is expected during the boreal winter, followed by a compensating la Nina. Figure 2. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century, made with “substantial confidence” in IPCC (1990), January 1990 to November 2014 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at less than 1.4 K/century equivalent, taken as the mean of the RSS and UAH satellite monthly mean lower-troposphere temperature anomalies. A quarter-century after 1990, the global-warming outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS and UAH monthly global mean surface temperature anomalies – is 0.34 Cº, equivalent to just 1.4 Cº/century, or a little below half of the central estimate in IPCC (1990) and well below even the least estimate (Fig. 2). The Great Pause is a growing embarrassment to those who had told us with “substantial confidence” that the science was settled and the debate over. Nature had other ideas. Though approaching 70 mutually incompatible and more or less implausible excuses for the Pause are appearing in nervous reviewed journals and among proselytizing scientists, the possibility that the Pause is occurring because the computer models are simply wrong about the sensitivity of temperature to manmade greenhouse gases can no longer be dismissed, and will be demonstrated in a major paper to be published shortly in the Orient’s leading science journal. Remarkably, even the IPCC’s latest and much reduced near-term global-warming projections are also excessive (Fig. 3). Figure 3. Predicted temperature change, January 2005 to October 2014, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the observed anomalies (dark blue) and zero real-world trend (bright blue), taken as the average of the RSS and UAH satellite lower-troposphere temperature anomalies. In 1990, the IPCC’s central estimate of near-term warming was higher by two-thirds than it is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. 3 shows, even that is proving to be a substantial exaggeration. On the RSS satellite data, there has been no global warming statistically distinguishable from zero for more than 26 years. None of the models predicted that, in effect, there would be no global warming for a quarter of a century. Key facts about global temperature The RSS satellite dataset shows no global warming at all for 218 months from October 1996 to November 2014 – more than half the 430-month satellite record. The global warming trend since 1900 is equivalent to 0.8 Cº per century. This is well within natural variability and may not have much to do with us. Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century. The fastest warming rate lasting ten years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century. In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century. The global warming trend since 1990, when the IPCC wrote its first report, is equivalent to below 1.4 Cº per century – half of what the IPCC had then predicted. Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100. The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than ten years that has been measured since 1950. The IPCC’s 4.8 Cº-by-2100 prediction is almost four times the observed real-world warming trend since we might in theory have begun influencing it in 1950. From September 2001 to September 2014, the warming trend on the mean of the 5 global-temperature datasets is nil. No warming for 13 years 1 month. Recent extreme weather cannot be blamed on global warming, because there has not been any global warming. It is as simple as that.  Technical note Our latest topical graph shows the least-squares linear-regression trend on the RSS satellite monthly global mean lower-troposphere dataset for as far back as it is possible to go and still find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño. Instead, it is calculated so as to find the longest period with a zero trend. But is the RSS satellite dataset “cherry-picked”? No. There are good reasons to consider it the best of the five principal global-temperature datasets. The indefatigable Steven Goddard demonstrated in the autumn of 2014 that the RSS dataset – at least as far as the Historical Climate Network is concerned – shows less warm bias than the GISS or UAH records. The UAH record is shortly to be revised to reduce its warm bias and bring it closer to conformity with RSS. Figure 4. Warm biases in temperature. RSS shows less bias than the UAH or GISS records. UAH, in its forthcoming Version 6.0, will be taking steps to reduce the warm bias in its global-temperature reporting. Steven Goddard writes: “The graph compares UAH, RSS and GISS US temperatures with the actual measured US HCN stations. UAH and GISS both have a huge warming bias, while RSS is close to the measured daily temperature data. The small difference between RSS and HCN is probably because my HCN calculations are not gridded. My conclusion is that RSS is the only credible data set, and all the others have a spurious warming bias.” Also, the RSS data show the 1998 Great El Nino more clearly than all other datasets. That el Nino, and that alone, caused widespread global coral bleaching, providing an independent verification that RSS is better able to capture such fluctuations without artificially filtering them out than other datasets. Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates appreciably below those that are published. The satellite datasets are based on measurements made by the most accurate thermometers available – platinum resistance thermometers, which provide an independent verification of the temperature measurements by checking via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years. The RSS graph (Fig. 1) is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file, takes their mean and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity. The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line via two well-established and functionally identical equations that are compared with one another to ensure no discrepancy between them. The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression. Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat. RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, discusses it at remss.com/blog/recent-slowing-rise-global-temperatures. Dr Mears’ results are summarized in Fig. T1: Figure T1. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998. Dr Mears writes: “The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.” Dr Mears concedes the growing discrepancy between the RSS data and the models, but he alleges “cherry-picking” of the start-date for the global-temperature graph: “Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.” In fact, the spike in temperatures caused by the Great el Niño of 1998 is largely offset in the linear-trend calculation by two factors: the not dissimilar spike of the 2010 el Niño, and the sheer length of the Great Pause itself. Replacing all the monthly RSS anomalies for 1998 with the mean anomaly value of 0.55 K that obtained during the 2010 el Niño and recalculating the trend from September 1996 [not Dr Mears’ “1997”] to September 2014 showed that the trend values “–0.00 C° (–0.00 C°/century)” in the unaltered data (Fig. 1) became “+0.00 C° (+0.00 C°/century)” in the recalculated graph. No cherry-picking, then. The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed. IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded: “Nevertheless, … weave substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.” That “substantial confidence” was substantial over-confidence. For the rate of global warming since 1990 is about half what the IPCC had then predicted. # Related Links:  Climatologist Dr. Roy Spencer: ‘Why 2014 Won’t Be the Warmest Year on Record’ – ‘We are arguing over the significance of hundredths of a degree’ Climatologist Dr. Pat Michaels debunks 2014 ‘hottest year’ claim: ‘Is 58.46° then distinguishable from 58.45°? In a word, ‘NO.’ Eco-Activists Warn 2014 Could Be Hottest Year On Record – Satellites Disagree ‘Hottest Year’ Update: NASA & NOAA ignore satellite data which reveal 2014 ‘well below’ hottest claims Even ignoring satellite data Year-to-date ‘record’ temps are 0.21C *below* climate model projections New paper finds excuse #66 for the ‘pause’: There’s no pause if you look at only at the warmest & coldest day of the year – Published in Environmental Research Letters 2014 might be 0.01C warmer than 2010! No Record Temperatures According To Satellites – BBC put up a deliberately apocalyptic picture while telling us the world is on course for the warmest year on record. What they failed to tell us was that the more accurate satellites, which monitor atmospheric temperatures over nearly all of the globe, say no such thing.  Figures from UAH are out for November, and these show a drop from the  October anomaly of 0.27C to 0.33C. This means that at the end of November, this year is only in a tie for 3rd with 2005, and well below the record year of 1998, and 2010. Flashback: 1990 NASA Report: ‘Satellite analysis of upper atmosphere is more accurate, & should be adopted as the standard way to monitor temp change.’ Study using dozens of models Claims: ‘Warming Climate Can Be Slowed in a Decade’ by cutting CO2 Climate Depot Note: If future temps continue to flatline or even cool, warmists can claim climate policy is responsible. They are already doing it! See: It’s Official — Temperature ‘Pause’ Caused By Climate Policies?! Medieval witchcraft lives! UK Energy Minister: Government policies ‘may have slowed down global warming’  AP’s Seth Borenstein publishes pure propaganda: Climate change has made Earth ‘hotter, weirder…downright wilder’ Climate Depot’s Morano comment: ‘AP’s Borenstein can be trusted to shill for UN’s climate summit in Lima Peru, which I will be attending and speaking at. Borenstein relies on Michael Oppenheimer (who is the UN scientists on the payroll of Hollywood stars) and Climategate’s Michael Mann. Borenstein ignores tide gauges on sea level  showing deceleration of sea level rise and ignores satellite temperatures which show the Earth in an 18 year ‘pause’ or ‘standstill’ of global warming. Borenstein tortures data in order to claim more weather extremes. We are currently at or near historic lows in tornadoes and hurricanes. Even droughts are on long term declines and floods show no trend. We know not to expect more from Borenstein.’ See: ‘Long sad history of AP reporter Seth Borenstein’s woeful global warming reporting’ Sea level claims debunked here: Extreme weather claims debunked here: Greenland ice claims debunked here: Antarctica ice claims debunked here: Overpopulation claims debunked here: Analysis: Why ’90% of the missing heat’ cannot be hiding in the oceans  

AP’s Seth Borenstein: ‘Some nonscientists claim no warming in 18 years, Fed scientist: ‘no one’s told the globe that’ 2014 likely hottest year’

If 2014 breaks the record for hottest year, that also should sound familiar: 1995, 1997, 1998, 2005 and 2010 all broke NOAA records for the hottest years since records started being kept in 1880. “This is one of many indicators that climate change has not stopped and that it continues to be one of the most important issues facing humanity,” said University of Illinois climate scientist Donald Wuebbles. Some non-scientists who are skeptical of man-made climate change have been claiming that the world has not warmed in 18 years, but “no one’s told the globe that,” Blunden said. She said NOAA records show no pause in warming. … If Earth sets a record for heat in 2014 it probably won’t last, said Jeff Masters, meteorology director for the private firm Weather Underground. If there is an El Nino, Masters said, “next year could well bring Earth’s hottest year on record, accompanied by unprecedented regional heat waves and droughts.”  

It’s Official: Global Warming ‘Pause’ or Standstill extends to over 18 years – ‘Pause’ has ‘endured for a little over half the satellite temperature record’

Special to Climate Depot Global Temperature Update It’s official: no global warming for 18 years 1 month By Christopher Monckton of Brenchley The RSS monthly satellite global temperature anomaly for September 2014 is in, and the Great Pause is now two months longer than it was last month. Would this year’s el Niño bite soon enough to stop the psychologically-significant 18-year threshold from being crossed? The official answer is No. Globally, September was scarcely warmer than August, which was itself some distance below the 18-year trend-line. Therefore, taking the least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomalies, there has now been no global warming for 18 years 1 month. Dr Benny Peiser, our good friend at the Global Warming Policy Foundation in the UK, had anticipated the official crossing of the 18-year threshold by a day or two with an interesting note circulated to supporters on the ever-lengthening period without any global warming, and featuring our 17-years-11-months graph from last month. The Great Pause is the longest continuous period without any warming in the global instrumental temperature record since the satellites first watched in 1979. It has endured for a little over half the satellite temperature record. Yet the Pause coincides with a continuing, rapid increase in atmospheric CO2 concentration. Figure 1. RSS monthly global mean lower-troposphere temperature anomalies (dark blue) and trend (thick bright blue line), September 1996 to September 2014, showing no trend for 18 years 1 month. The hiatus period of 18 years 1 month, or 217 months, is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, has a long and intriguing discussion of the Pause, and of the widening divergence between the models’ excitable predictions and the mundane reality in the RSS blog, at remss.com/blog/recent-slowing-rise-global-temperatures. Dr Mears’ results are summarized in Fig. 2: Figure 2. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998. Dr Mears writes: “The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.” Dr Mears’ regrettable use of the word “denialists”, with its deliberate overtones of comparison with Holocaust deniers, reveals Dr Mears as what we may call a “liarist” – one who is prone to push the evidence in the profitable direction of greater alarm than is scientifically justified. Interestingly, therefore, the RSS data, which show less recent warming than all other datasets, are under the management of a liarist, while the UAH data, which (until v. 6 becomes available at any rate) continue to show more warming than the others, are managed by sceptics. Dr Mears admits the discrepancy between the RSS data and the models’ exaggerations, but he echoes various trolls here in alleging the supposed “cherry-picking” of the start-date for the global-temperature graph: “Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.” It is time to deal with this nonsense about start-dates very firmly. The spike in temperatures caused by the Great el Niño of 1998 is largely offset in the linear-trend calculation by two factors: the spike of the 2010 el Niño, and the sheer length of the Great Pause itself. To demonstrate this, I replaced all the monthly RSS anomalies for 1998 with the mean anomaly value of 0.55 K that obtained during the 2010 el Niño. Then I recalculated the trend from September 1996 [not Dr Mears’ “1997”] to September 2014. All that happened is that the trend values “–0.00 C° (–0.00 C°/century)” shown in the unaltered data (Fig. 1) became “+0.00 C° (+0.00 C°/century)” in the recalculated graph. Not exactly a major difference. That is the end of that climate-liarist canard. The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed. IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded: “Nevertheless, … we have substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.” That “substantial confidence” was substantial over-confidence. A quarter-century after 1990, the outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS and UAH monthly global mean surface temperature anomalies – is 0.34 Cº, equivalent to just 1.4 Cº/century, or exactly half of the central estimate in IPCC (1990) and well below even the least estimate (Fig. 3). Figure 3. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century , made with “substantial confidence” in IPCC (1990), January 1990 to August 2014 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at less than 1.4 K/century equivalent, taken as the mean of the RSS and UAH satellite monthly mean lower-troposphere temperature anomalies. The Great Pause is a growing embarrassment to those who had told us with “substantial confidence” that the science was settled and the debate over. Nature had other ideas. Dr Mears, rightly, says the Pause is probably attributable to several factors rather than one. But the one factor he hastily rules out is any major error in the physics of the models. Though more than 50 more or less implausible excuses for the Pause are appearing in nervous reviewed journals, the possibility that the Pause is occurring because the computer models are simply wrong about the sensitivity of temperature to manmade greenhouse gases can no longer be dismissed. Remarkably, even the IPCC’s latest and much reduced near-term global-warming projections are also excessive (Fig. 3). Figure 4. Predicted temperature change, January 2005 to August 2014, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the observed anomalies (dark blue) and zero real-world trend (bright blue), taken as the average of the RSS and UAH satellite lower-troposphere temperature anomalies. In 1990, the IPCC’s central estimate of near-term warming was higher by two-thirds than it is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. 4 shows, even that is proving to be a substantial exaggeration. On the RSS satellite data, there has been no global warming statistically distinguishable from zero for more than 26 years. None of the models predicted that, in effect, there would be no global warming for a quarter of a century. The Great Pause may well come to an end by this winter. An el Niño event is underway and would normally peak during the northern-hemisphere winter. There is too little information to say how much temporary warming it will cause, though. The temperature spikes of the 1998, 2007, and 2010 el Niños are evident in Figs. 1-4. El Niños occur about every three or four years, though no one is entirely sure what triggers them. They cause a temporary spike in temperature, often followed by a sharp drop during the la Niña phase, as can be seen in 1999, 2008, and 2011-2012, where there was a “double-dip” la Niña that is one of the excuses for the Pause. The ratio of el Niños to la Niñas tends to fall during the 30-year negative or cooling phases of the Pacific Decadal Oscillation, the latest of which began in late 2001. So, though the Pause may pause or even shorten for a few months at the turn of the year, it may well resume late in 2015 . Either way, it is ever clearer that global warming has not been happening at anything like the rate predicted by the climate models, and is not at all likely to occur even at the much-reduced rate now predicted. There could be as little as 1 Cº global warming this century, not the 3-4 Cº predicted by the IPCC. Key facts about global temperature   The RSS satellite dataset shows no global warming at all for 217 months from September 1996 to September 2014. That is more than half the 429-month satellite record.   The global warming trend since 1900 is equivalent to 0.8 Cº per century. This is well within natural variability and may not have much to do with us.   The fastest measured warming trend lasting ten years or more occurred over the 40 years from 1694-1733 in Central England. It was equivalent to 4.3 Cº per century.   Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century.   The fastest warming rate lasting ten years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century.   In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century.   The global warming trend since 1990, when the IPCC wrote its first report, is equivalent to below 1.4 Cº per century – half of what the IPCC had then predicted.   Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100.   The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than ten years that has been measured since 1950.   The IPCC’s 4.8 Cº-by-2100 prediction is almost four times the observed real-world warming trend since we might in theory have begun influencing it in 1950.   From August 2001 to August 2014, the warming trend on the mean of the 5 global-temperature datasets is nil. No warming for 13 years 1 month.   Recent extreme weather cannot be blamed on global warming, because there has not been any global warming. It is as simple as that.   Technical note Our latest topical graph shows the RSS dataset for the 217 months September 1996 to September 2014 – just over half the 429-month satellite record. This is as far back as it is possible to go in the global instrumental record and find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño: it is calculated so as to find the longest period with a zero trend. Furthermore, the length of the pause in global warming, combined with the offsetting effect of the 2010 el Niño on the calculation, ensures that the distortion of the trend caused by the proximity of the 1998 el Niño to the 1996 start date for the trend is barely discernible. Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates appreciably below those that are published. The satellite datasets are based on measurements made by the most accurate thermometers available – platinum resistance thermometers, which not only measure temperature at various altitudes above the Earth’s surface via microwave sounding units but also constantly calibrate themselves by measuring via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years. The graph is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file, takes their mean and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity. The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line via two well-established and functionally identical equations that are compared with one another to ensure no discrepancy between them. The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression. Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat. Related Links:  

Happy Anniversary: 1 October May Mark 18 Years Without Global Warming

The scientific community would come down on me in no uncertain terms if I said the world had cooled from 1998. OK it has but it is only 7 years of data and it isn’t statistically significant. –Phil Jones, University of East Anglia 5 July 2005  Bottom line: the ‘no upward trend’ has to continue for a total of 15 years before we get worried. -Phil Jones, University of East Anglia 7 May 2009 2014 will probably be in the top five warmest, but at the moment it will probably not turn out to be warmer than 2010. It is impossible for it to beat 2010 by a statistically significant margin, even if we define that as only one standard deviation above the decadal mean. Even if 2014 does beat 2010 it will only be by a statistically insignificant margin and well within the inter-annual error bars. In all probability 2014 will continue the global surface temperature standstill in a statistically perfect manner. When will the global surface annual temperature start to rise out of the error bars of the past 18 years? –David Whitehouse, The Global Warming Policy Forum, 28 September 2014 It’s fair to say that this pause is something of an embarrassment to many in the climate research community, since their computer models failed to indicate that any such thing could happen. Just how long the temperature pause must last before it would falsify the more catastrophic versions of man-made climate change obviously remains an open question for many researchers. For the time being, most are betting that it will get real hot real fast when the hiatus ends. –Ronald Bailey, Reason Online, 9 September 2014

No Warming For 18 Years Has Convinced Climate Experts That CO2 Is Even More Dangerous Than Before

No Warming For 18 Years Has Convinced Climate Experts That CO2 Is Even More Dangerous Than Before http://stevengoddard.wordpress.com/2014/06/02/no-warming-for-18-years-has-convinced-climate-experts-that-co2-is-even-more-dangerous-than-before CO2 has increased by 10% over the last 18 years, with no warming. This complete lack of correlation has convinced climate experts that CO2 is even more dangerous than they previously believed. Allowable carbon emissions lowered by multiple climate targets : Nature : Nature Publishing Group Wood for Trees: Interactive Graphs

For more results click below