Search
Close this search box.

Could reviving Woolly-Mammoth genes fight the effects of global warming?

http://www.foxnews.com/science/2018/05/17/could-reviving-woolly-mammoth-genes-fight-effects-global-warming.html

JERSEY CITY, N.J. — Woolly mammoths have been extinct for more than 4,000 years, but with new gene-editing techniques, they could help mitigate the effects of a modern problem: climate change.

Most of the hype so far has focused on bringing these shaggy beasts back to life using their permafrost-preserved DNA. But this time, scientists aren’t aiming for a “Jurassic Park” scenario — they’re not trying to bring back entire mammoths exactly as they were in the last ice age. Rather, they’re hoping to mingle some of the mammoths’ ancient genes with those of today’s Asian elephants (Elephas maximus), to increase the elephants’ tolerance to the cold, said George Church, a Harvard and MIT geneticist who is heading the Harvard Woolly Mammoth Revival team.

“I don’t even think it’s desirable” to bring back the entire mammoth, Church told Live Science Friday (May 11) here at the 2018 Liberty Science Center Genius Gala. He thinks a few ancient genes will do more good, by boosting the survival chances of threatened elephants, which could then be reintroduced to northern parts of the globe. Once there, the genetically tweaked elephants would topple trees that keep the area warm in the winter, thereby restoring a more climate-friendly ecosystem. [6 Extinct Animals That Could Be Brought Back to Life].

Restoring the steppe

When mammoths roamed in a northern area known as the “mammoth steppe,” that ecosystem was rich in grasses. But after the woolly mammoth (Mammuthus primigenius) went extinct and other grazers left the area, grasses gave way to shrubs and a tundra ecosystem, an environment that the Harvard Woolly Mammoth Revival team says is “contributing to human-driven climate change.”

–– ADVERTISEMENT ––

“The elephants that lived in the past — and elephants possibly in the future — knocked down trees and allowed the cold air to hit the ground and keep the cold in the winter, and they helped the grass grow and reflect the sunlight in the summer,” Church said. “Those two [factors] combined could result in a huge cooling of the soil and a rich ecosystem.”

In the absence of large creatures to knock down trees and trample the snow, the opposite happens, Church said, as tall trees and a fluffy blanket of snow keep the permafrost warm in the winter months.

“Fluffy snow is like a down blanket keeping the warm summer soil away from the -40 degree winter winds,” Church said. And trees absorb light and heat in the summer and keep cold winds out in the winter, he added.

With already warmer temperatures, this leads to the melting of permafrost and the release of greenhouse gases like methane, Church said. In fact, 1,400 gigatons of carbon — the amount equivalent to 43 times as much carbon as fossil fuels and industry produced last year, according to the International Energy Agency — is at risk of escaping into the atmosphere if permafrost melts, he added.

Share: